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In this paper, the Marcinkiewicz-Zygmund inequality on a C' + ,i smooth simple
arc is obtained. Then we get some results about approximation of the interpolation
polynomial on the arc. C 1995 Academic Press. Inc.

1. INTRODUCTION

For X k = 2kn/(2n + 1), k = 0, 1, ..., 2n, and for arbitrary trigonometric
polynomials Tn(x) of degree at most n, the well-known Marcinkiewicz­
Zygmund inequality can be written as [11 ]

1 <p< +0:;,

where C l and C2 are positive constants depending only on p.
There are many extension forms of the inequality (see, for example,

[ 4, 6, 9]), and they play the important roles in the research of approxima­
tion by interpolation polynomial and the theory of operators. In this paper,
we will prove the inequality on any C2 + J smooth simple arc in the complex
plane and get some theorems of approximation by interpolation polyno­
mial on the arc.
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As we know, there are many elegant approximation results on the inter­
val [-1,1], but there are very few papers discussing polynomial
approximation on a simple arc (not a closed Jordan curve) in the complex
plane. It is known that approximation polynomials can be constructed by
Dzjadyk's kernels on the arc [2]. But the method is very complicated,
comparing with construction of interpolation polynomials. One of our
theorems shows the mean convergence of the interpolation polynomials on
the arc. For uniform approximation, we will give an estimation on the
error of the (n-l)th interpolation polynomial by the (n-l )th best
approximation rate timing log n.

THEOREM 1. Let r be a C 2
+,\ smooth simple arc in the complex plane C.

There exists {zk.n:O~k<n}cr such that for l<p<+DJ and any
algebra polynomial Pn_ I (z) 0/ degree at most n - I,

(1.1 )

where C3 and C4 are positive constants depending only on p and r, and
.... n.n-,.;.,O,n·

For fEC(T), let Ln-1Cf,z) be the (n-l)th Langrange interpolation
polynomial to f(z) at {Zk. n: 0 ~ k < n}. For f E L I(T), let L~_ I(f, z) denote
the polynomial of degree at most n - 1 and satisfying

L~-I(f,zk.n)= _~_I f+l"f(O [d(l,
I"k.n"k+ Lnl 'k,,,

O~k<11. ( 1.2)

The following two theorems are the applications of Theorem 1.

THEOREM 2. Under the conditions of Theorem 1, there exists {Zk. n} such
that

lim ilf(z)-Ln-I(f,z)llulT)=O
n.- +z

holds for any f E qr) and 0 < p < + 00.

(1.3)

THEOREM 3. Under the conditions of Theorem I, there exists {zk. n} such
that

lim II/(z) - L:-l(f, z) II U(T) = 0
n- +'z

holds for 1< P < + 00 and any f E LP(r).

(1.4 )
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Concerning uniform approximation of interpolation polynomials, we
have the foIlowing result.

THEOREM 4. Under the conditions of Theorem I, there exists {':k.,,} such
that for anYfEC(r), n> I,

where C5 is a positive constant depending only on rand E" _ ,en is the hest
approximation rate off in the LX(r) norm by polynomials ofdegree at most
n - I.

Without specific declaration, throughout we assume that r is a C2
+,5

smooth simple arc and I < P < + 00. We use the notations c and cj to
denote positive constants depending only on rand p, and in different
places the notation c may not represent the same constant. The notation
A ~ B means

cA ~B~cA.

2. SOME COMPLEX GEOMETRY

Let U be the unit disc {H': II!' I < I >. Let.: = 'P( I!'} be the conformal map
of C\ [J onto C\r such that 'P( 00 ) = 00 and 'P' ( ex) > O. Without loss of
generality we may further assume (0 = 'P(1) and (1 = 'P( e'lIl) (0 < (} 1< 271:)
are the two ends of r

Evidently,

maps C\r onto the exterior region of a smooth Jordan curve. Some
elementary calculations can show that the curvature does not jump at the
image of each end and the Jordan curve is C 2 + ,5 smooth. As in the Proof
of Theorem 3.6 and Theorem 3.9 of [6], we have (see [2, p. 386])

(2.1 )

and

I
d I 'P'(w) 11

dwl(l-w-1)(I-el(/lw-'lJ ~c.
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Then we have
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(2.2)

For w, = P I cit" W 2 = P2 cit" 1 ~ P" P2 ~ 2, when both I, and 12 are in the
same interval [0, 0,] or [0" 2n:], we have

I'P( WI) - 'P( w2 )1 ::=:: Iw} - 11'21 min (Iw, - cli'l + Iw, - 11'21)·
Ii' ~o. Ii,

For simplicity of notation, we always assume the minimum of the above
formula is obtained at 0* = 0; then

Since

we also have

When 'P is restricted on {C ili : 0 E[0, 0I]}, it is an isomorphic map onto
r. We denote the inverse map by CPo. For t E [0" 2n:], let

Then J:{C't: /E [01,2n:]}->{C ill :OE[O,OI]} is an isomorphic map. We
denote the inverse map by J '. For 0 E [0, 0 I]' set

Then J is an inverse direction isomorphic of unit circle aU with I and e ill
,

both fixed points. Evidently

'P( cit) = 'P( J( e it ) ), IE [0, 2n:]. (2.5 )

and

(2.6 )
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Proof By (2.3) and (2.5), we have

le it] _ 11 ;:=::: IP(e"l ) - P( 1)1 1/
2

= IlJI(J(e it' ))-lJI(I)!1/2

;:=::: IJ(e i' ,) - 11, j = I, 2.

69

Togther with (2.4) and (2.5)

Je"] - eit'l ( le it ] - 11 + le it, - 11) ;:=::: IlJI( ei/]) - lJI( eit')1

= IlJI( J(e it ])) - lJI( J( cit, )) I

;:=::: IJ(e i/]) - J(eit')1 (IJ(e it ])-11 + IJ(e it ,) - 11)

;:=::: IJ(e it ]) - J(eit')1 (le it ] - 11 + le it , - 11)·
Then we get (2.6).

By (2.4) and (2.6) we have

IlJI( pcit ]) -lJI(e"')1 ;:=::: ((p - 1) + leit] - eit'l H(p -1) + Ie it ] -11 + Je"' - 11)

;:=::: «(p -1) + IJ(e it ]) - J(e it,)! )«p - 1) + IJ(c itJ ) - II

+IJ(eil')-ll)

;:=::: IlJI(pJ(c"]))- P(J(eit'))1

= IlJI( pJ( cit])) - lJI( c"') I.

Then we have (2.7).
Let

Tn = { lJIl ( 1 + ~) cit J: t E [0, 2n) }

and

TIn = { lJIl (1 + ~) citJ: t E[0, OIJ}

T 2n = {lJIl (1 + ~) citJ: t E [() I , 2nJ }.

Obviously, for Tin or T 2n , the ratio of arclength of any subarc to the chord
length is uniformly bounded (this argument can also be proved strictly by
(2.1) and (2.3)).

Let

U( z,r) = {( E C: I( - zI< r} , (2.8)
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then for any:: E C, we have
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Hence

J [d(l ~ cr.
1,I'nrl lJ(::, r)

j= I, 2.

f., Id(l ~ cr,
Inn Dl=. r)

Then {Til} is a series of uniformly regular Jordan curves [I].

3, CAUCHY'S INTEGRAL OPERATOR

T j'( -) = _I j' f«() l"
II - 2' " (~.m [~,~-::

(2.9)

(3.1 )

For:: E Til we define T,J(::) by the non-tangent limit of the above formula.

LEMMA 3.1. Suppose I < p < 00, fE U'(TII ), then

Furthermore, for any positive measure fl. we have

{
. I }I/I' {" }Iii'j .. _ IT,J(::W [d/l(::)[ ~ c I. If«(W Id([
I+fl(::) 'l~,

where

_ fl(U(::,r))
fl(::)=SUp .

1'>0 r

(3.3)

(3.4 )

This lemma is a corollary of Proposition 6 in [I J. since Til is a series of
uniformly regular Jordan curves.

4. ADJUSTED FEJER'S POINTS

For n>O, let

k = 0, I, .", n - 1. (4.1 )

They are so-called Fejer's points. It is well-known that the interpolation
polynomials at Fejer's points have good property of approximation in
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Jordan domains. Since 'P maps two points {Cit, J( eit
)} to the same point on

r, some Fejer's points may be very close and even meet each other. We can
see that if a pair of Fejer's points meet each other. then we need multiple
interpolations at the point, which means interpolating to the derivative of
the function. Under the assumption f( z) E C( n, the derivative may not
exist. In this paper, we adjust some Fejer's points in order to keep distance
between them.

Let

J 2kn }
KIII=lk:O~k<I1'-'-l E[O,OIJ

{
2kn }K 211 = k: 0 ~k <n, --;;-E [OJ' 2n) .

By Lemma 2.1, we have

Let

. fc 7 n n}
co=mm (2'2 .

Now we adjust some Fejer's points as follows.

( 1) Fork E K211' let

I'k. II = arg( J( eil2klt J.illl).

(4.2)

(4.3)

(4.4 )

(2) For j E Kill' a function flag(j) is defined by

flag(O) = 0

and

{

flag(j - 1),
flag(j) =

flag(j - 1)+ 1,

(3) For jEK 11I , let

. .!2(j - I ) n leoIf mm -A k . 1I ~-2 '
kE K~ 11 fl (4.5 )

otherwise.

{

2j n
,

11

)'j. II = 2jn + (_ 1)Oaglj J co,
II 11

. . j2j n I CoIf mm --)'k.1I ~-2 '
kEK2n 11 n

otherwise.

(4.6)
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It is necessary to point out that for )0 = [ () I 11/2n], (4.6) may cause

in this case, we define

2jn Co
)'/',( n=---

. 11 11

By (4.4) and (4.6), we have Ak •
II

E[O,OI], k=O, 1, ... ,11-1.

(4) Let

(4.7)

k = 0, I, ... , 11 - I; (4.8)

these are the so-called adjusted Fejer's points.

LEMMA 4.1. For) #- k, we have

C

I, _1 I:;>;~
Aj II "k II --- 2 .• • 11

(4.9)

Prool For ), k E K 2II' (4.2) implies (4.9). For), k E K I ,,, by (4.3) we have

, 12)n 2kn I I 2)n I I' 2kn IlJ. j . II -Ak . lI l;? --- - Ajll-~ - Ak.II--
, 11 11' 11 11

2n 2co 2co;?---;?-
11 11 11

When) E Kill and k E K 2/I' by (4.6) we have (4.9) too.

5. UNIFORMLY SEPARATED

A set {w)} c U is called e-uniformly separated if

. /w,-wk Imf IT} ;? e > 0,
k j#k I-Wk1Vj

and {Hj} c U is called e-weakly separated if

I
W,-Wk Iinf) ;? e > O.

j#k I - Wk w j

(5.1 )

(5.2)
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LEMMA 5.1. For any n > 0, {4>,,( Zk. ,,): 0 ~ k < n} is cR-weakly separated.

Proof For ji=k, from (2.3) and (4.9) we have

Since

we have

d( z/. ", TI/) ;===: Itp l (1 +~) e
iAI

nJ- tp( e
iii

n)I

;===: ~ (~+ IA,. 1/1),n n .'

(5.3 )

(5.4)

(5.5 )

As in the proof of Lemma I in [7], we know that {4>,,(Zk.I/): O~k<J1}
is (c9 /16 )-weakly separated.

In fact, we will show that {4>I/(zk.I/):O~k<n} is c-uniformly separated.
Let 6" denote the Dirac mass at Il'. It is sufficient to show that

" I

V,,= L 61>"I=k.JI-I4>,,(zk.,,)!2)
k~()

is a Carleson measure [3].

LEMMA 5.2. For anyfEE!'(D,,), 11'(' hurl'

IIfll LP( n ~ c llfll Ull;,1

and
n-I

L If(Zk." W' dk ~ c lO IIIII £Pil n )

k~O

(5.6)

(5.7)

(5.8 )

Proof Sincef(z) is analytic in D,P T,J(z) =I(z). For d/l, the arc length
measure of T, from (3.4) we have il(z) ~c. By (3.3) we have (5.6).
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Now we are going to show that

L: If(Zk,/lWdk~CIO Ilflifl'(/~I'
kEKl n

(5,8')

The other part of the sum for k E K 2/1 can be estimated in the same way,
By (5,51 we have

(5,9)

(5,10)

Let V = Uk E Kin 8V k and let a be the arc length measure of V. Since
If(zW is subharmonic on D", we have

L: If(Zk, "W dk~ Cf Ifl P da,
kEKln

In order to use (3,3) to the measure a, we have to estimate

(5,11 )

r>O

_ a( Viz, r))
a(z)=sup ,

r
Z E V.

For zE8Vb if r~2rk' by (5,10) we have V(z,r)n V=V(z,r)noVb

then

sup

When r>2rk, by (5.4) we have

a(V(z,r))
---=r,

r
(5,12)

(5,13 )

If V(z,r)naVj#<p and i#k, by (5,10) we have r~2(rj+rk)' Then
IZj, /I - Zk, /II ~ (rj + rk)+ r < 2r, This implies Zj, /I E V(Zk, ", 2r), Then

a(V(z,r))~ L 18V)=2n L rj , (5,14)
1=" n - =k. "I < 2r 1=,. IT - =k, III < 2r

By (2.4) we have

{jEK,,,: !Zj,,,-zk,,,1 <2r} c {jEK1,,: Ik- il(k+ j) <c12n2r},
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Let S(k, r) denote the set in the right side of the above formula, and let
it, i2 be the smal1est and largest integer in S(k, r) respectively. By (5.4) and
(5.14),

a(V(z,r))~c I i+,I=c(J2-il+ l )(!2+il+ 2)
Sik. rI n~ 2n

i~-i;+3i2+iJ+2= c '--==-----0--'----=7------=--'---
2n 2

(5.15 )

and

From (5.15), we have

a( Viz, r)) ~ cr,

Togther with (5.12) we have d'(z)~c. By (3.3) and (5.11) we have (5.8').

Using Lemma 5.2, we can get the fol1owing statement similar to the
Proof of Lemma 3 in [7].

LEMMA 5.3. For any n>O, {eP,,(zk.,,):O~k<n} is c-un[(ormly
separated.

Since {4>"(Zk,,,): 0 ~ k < n} is c-uniformly separated, we can use the free
interpolation theory to find an analytic function satisfying the interpolation
condition at {4>,,(Zk.,,)}.

LEMMA 5.4. Given complex numbers ak, k=O, I, ... , n-I, there exist
g(z)EEP(D,,) and h(z)EHf(D,,) such that

k = 0, I, ... , n - L

and

II gil LPiI~1 ~ c [~~ lakl PdkfP

IlhllL'i1'"I~c max lakl·
O~k</1

Proof The proof is the same as the Proof of Lemma 4 in [7].

640 RVI-7
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Let
n-t

(o(Z) = n (Z-Zk,n)'
k~O

LEMMA 6.1. For Z E Tn' we have

Iw(z)1 x ['1"( ex) )]n.

(6, I)

(6.2 )

Proof Let
n-l

w*(z) = n (z-zLl
k=O

where zt, n are Fejer's points,
As in the Proof of Lemma 4 in [7] (taking ex = 2), we have

(6,3 )

Iw*(z)1 x ['1"( ex)) ]n,

Therefore it is sufficiently to show that

I
w(z) Ix I

w*(z) .

Obviously,

ZE Tn'

(6.4 )

where

(6.5)

(6.6)

Let z = 'P[ (1 + lin) e ili
] E Tn' We will show (6.4) in the cases 8 E [0, 8 t ]

and 8E (8 J , 2n) separately.

Case 1. 8E [0, 8 t ], by (2.4) we have

Therefore it will not cause any essential change in estimating (6.4) if we
omit several factors in the right-side product of (6.5). Hence we may
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assume that (3.6) does not happen and the elements in S" range as
k(O) <k(l) < '" <k(s). By (4.5) we have

Evidently,

flag(k(j)) = j, j = 0, 1, ... , s. (6.8 )

O J=fo 2k(0)7Cj f 2k(S)n 0 j s--I f 2k(l)n 2k(l+llnj[0, 1 ' U , 1 U 1= 0 ' .
n n n n

When OE[2k(l)njn, 2k(l+1)nin], by (6.6) and (6.7) we have

I
w(.:) I Ii 1- /ii2 I(.: - .:kil - 211. 11 )(.: - .:kil - 2;" - 11. II) I

log~ = I log _ _* _ _*
w (-) ) ~ J (~ - - k iI - 2j I. 11 )( - - - kil - 21 - I I. 11 )

[(.I' - 1- I 1,2 J I(.: - .:kil + 2;" I. 11 )(.: - .:kil + 21 + 11.11) I
x I log _ _* _ _*' + 0(1 )

;" ~ 1 ( .. - - kil + 21 I. 11 )( ~ - ~ kil + 2j + I I. 11)

(6.9)

Evidently,

(z - .:kil - 2;" - 1 I. n)(': - .:kII - 21 I. II )

(.: - .:til - 2; - I I. 11 )(.: - .: til - 21 I. n)

.:kl/- 211. II + .:kil - 21 - I I. 11 - .:til - 2;" I. " - ztil- 21 - 11.11
= 1---...:.--------------

.: - .:til - 21 I I. II

(.:til 2)1.11 ':kil 2j1. n)(.:tU- 2)1. n - ':k(/- 2;"-11.11)
+---.::......._-.,---'--------:-------

(.: - ztu - 2) I. ,,)(.: - .:til- 2j - J I. n)

Writing '7=(-I)/(Co/I1), by (4.6), (4.8), and (6.8) we have

I.:kil - 2;" I. 11 + .:kil -- 2;" - I I. 11 - .:til - 2;" I. " - .:til - 2j - I I. 111

= I'I'(e i(2kil 2;"I"ill)+I~) _ 'I'(eiI2kil-2/1"ill)

+ '1'( ei( 2kll - 2;"- 11 "/111 - ;'7) _ '1'( ei( 2kl/- 2;" - II "/111) I

= It~ ['I"(e i (1 2kil-2/ 1"/IIl-TiI) ei(2kil-2)1,,1/1I+iI

_ '1"( ell( 2kil - 2) - I I "in I - II) ell( 2kU . - 2) - I I "in I - /I J dt I

(6.10)
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By (2.1) and (2.2),

I:::kl/- 2j)." +:::kll- 2j - J I." - :::tll- 2j I." - :::tll- 2} - II." I

k(l- 2j) - k(l- 2j - 1)
~c ~

n

k(l- 2j) - k(l- 2j - 1)
~ c 0 •

Ir

By (6.7) we have

(6.11 )

[11-11/2]

~c L:
[11- 1}/2]

~c L

k(l-2j)-k(l-2j-l)

(nO - 2k(l- 2j - 1l n + 1)2

k(1- 2) ) - k(1- 2} - 1)

(nO - 2k(l- 2) - 1) n + 1)(nO - 2k(l- 2)) n + 1)

1- J k(l- In) - k(l- In - 1)
< C L ---------------­
---: m = J (nO - 2k(l- m - 1l n + 1)( nO - 2k(l - 111) n + 1)

_ C (1 1)< C ( 6.12 )
- 2n nO - 2k( I - 1) n + 1- nO - 2k( 0) n + 1 " .

By (2.4) we have

[11-1) 10 1(-* ... )(-*. -)1L ," ~ kl/- 2j I. " - - kr 1 2j I." - kll 2, ). " - - kl/- 2j . 1I. "

i= J I(z - ::::1I-2jl. ,,)(::: - ::::11- 2j J!.,,)I

[11- J 1/2]

I
(l/n )(k(l- 2j) + 1)/n

(l(2k(l- 2j) n lin - 01 + l/n}( 1(2k(l- 2j) n )/nl + 101 + l/n)

((k(l- 2j) - k(l- 2) - 1)/n)( k(l- 2) )/n))
x -'" ." .----'------

(1(2k(l-2j -1) n)/n - 01 + l/n)( 1(2k(l- 2j- 1)/n) nl + 10/ + lin)

[(1-11/2] k(l- 2)) -k(l-2j -I)
~ j ~l (nO - 2k(l- 2j - I) n + 1)( nO - 2-k(-I--~2J-')-n-+-I)~ c. (6.13 )

Then we have

" l2k(l) n 2k(l + I) njbe , .
n 11

(6.14)
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In the same way, we can get II~I ~ c. Together with (6.9) we have (6.4)
for 0 E [2k(l) n/II, 2k(l + I ) nlll].

For OE [0, 2k(0) n/IIJ u [2k(s) n/II, 0IJ, the procedure of the proof is
similar. Then we have (6.4) for OE [0, 01].

Case 2. For OE (0 1 , 2n), let

0' = arg( J( e/o ) ) E [0, 0 I J
and let

By (2.6), we have

1':-':k./lI;::::: 1.:'-':k./lI;::::: I.:' -.:LI;::::: 1':-':k./lI· (6.7')

This corresponds to (6.7) in Case 1.
For 0' E [2k(/ ) n/II, 2k(/ + I ) nill], by (6.7') we also have formulas such

as (6.9) and (6.10). Since I.:'-.:Ll;::::: 1.:-.:.t."I, by (6.12) we have

lil-II/~] 1- +- --*. --* IL -kif 1.jl.n -/.,;11--2)- 1),)1 -kt/-'2.1).}] .... k!l-2j-l).n

j~1 I,:-:::kl/. ~)-I)./Il

[II II'~] 1- +- . --* . --* 1"'=" " - kl/-· ~j I. /I - kl/· ~J - II. /I - kl/- 211. /I - kil- ~j - 11. /I
- - L. ------------------ ~ C,

i=l 1.:'-=:(/--2)-11.,,1
and by (6.13)

[i1-II/~] I(:::kil-~jl./I-:::kl/-~jl./I)(:::kil ~jl./I-:::kll .~j_II./I)1

I 1(_ -* )(- -* )1j = I .... - ... kl} - 1) l. If .;;. - ~ k( I 2) -- ll. }]

[i1-lli~]I(-* -- . )(-* -- )1'\"' ' .... k(l- 2jJ. If .... kif - 2./l. 11 ... k(/ - - 2.1 I. 11 ... k(/ -- 2.1 - I J. 11

;::::: 1.. _' _* _' _* ~ C.
J~ 1 1- ( - - kif- ~j I. II )( - - - kif- ~J I J. /I) 1

Then we have (6.4) for 0' E [2k(/) nlll, 2k(l + 1) n/II].
For 0' E[0, 2k(O) n/IIJ u [2k(s) n/II, 0IJ, the procedure of the proof is

similar. Then we have (6.4) for () E ((J I' 2n).

7. PROOF OF THE THEOREMS

Proof of Theorem 1. By the Bernstein theorem, we have lip/l-,llu(/~' ~

C ilp/I-Illuill' For {:::k./I}, the adjusted Fejer's points, from (5.8) we have

II-I

I IP" -l(:::k. "lIP dk ~ clIP" -lll ~Pill'
k=O



80

By (2.4),
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(7.1 )

The left side of ( 1.1 ) holds.
On the other hand, from Lemma 5.4 there exists g(=) E EI'(D,,) such that

k = 0, 1, ... ,11- 1, (7.2)

and

By (7.2) we have P,,_I(=) = L,,_,(g, =), hence

1 f w(=) g(O Y

g(=)-P"_I(=)=~ ~(y)~dl.,
_7[1 l"" w (, I., - -

(7.3\

= w(=) T" (!L) (=\,
w

From Lemma 3.1 and Lemma 6.1,

=ED".

Ilg-P" IlluI[',,):(max IW(=)IIIT,,(f)(=)I!I!
;Ef" W LPil',,)

Iw(=)1
:(c ~ax-I(Y)lllglluil"l

=.,E[" W"

Hence

Together with (7.3), the right side of (I.I) holds.
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Proof of Theorem 2. It is sufficient to prove the theorem for
I <p< +:xJ. Let {Zk.lI} be the adjusted Fejer's points. Since L,,_I(f,Z) is
a polynomial of degree at most n -I, by (1.1 ) we have

IlL" _I(f, z) II VI!') :s; c {"f If(Zk. IIW IZk + I. II - Zk. III }liP
k=O

:S;c Ilfllcln- (7.4)

That means L"_l: qr)-+LP(r) is uniformly bounded; then we have
( 1.3).

Proof of Theorem 3. First, we show (1.4) for f E C( r). By the uniform
continuity of f(z) on r, we have

lim sup If(Zk.,,)- .,1 fk+Lnf(Old(ll=o.
n----. x.. O~k<n l ..... k,n ... k+ 1,111 -k,n

Similar to (7.4), we have

lim IILII-I(f, z) - L~_I(f, z)lluln

I
I f=k+Ln I

:S;c lim sup f(Zk.II)- .,___ ~ f(O Id(l
n_,x O~k<n l .... k.I1,.;./(+ I. 111 -k,1l

From Theorem 2 we have (1.4) for f E qT).
For f( z) E U( T), by Theorem I and Holder's inequality

IIL~
II-I I I f=k+"n IP

l(f, z)11 fJ,1l'i:S; c I .,__., ~ f(O Id(1 IZk + I. II - ':k. "I
k~O l-k."-k+I.,,1 ~k.n

:S;c "f IZk~II-Zk.1I1 f+Ln If((W Id(l
k=O lzk.nzk+l.nl ::k,n

:s; CI~ Ilfll £PI/I'

That means L~_ I: U( r) -+ U( r) uniformly bounded. Since C( r) is dense
in U( r), we have

lim Ilf(z)-L~-I(f,z)llul/l
n-x

::::;; inf lim (1If(z)-h(z)-L,~_I(j-h,z)llu(/1
heCn_,y_,

+ Ilh(.:) - L:_1(h, z)llvln)

:s; inf {(l + C 13) Ilf(z) - h(z)1I VI Ii
hECln

+ lim Ilh(z) - L~_I(h, z)11 uln} = O.
n- '7
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Proof of Theorem 4. In fact, it is sufficient to show

IIPn-l(z)IIC(/J ~ clog n max IPn-I(Zk.n)1
O~k<lI

holds for any polynomial Pn _ 1(z) of degree at most n - I.
By Lemma 5.4, there exists h(z) E H"(D n ) such that

(7.5 )

k = 0, 1, ... , n - 1,

and

For Z E r, we have

1
1 f w(z) h(O ylIh(z)-Pn_dz)1 = -. -.-y -y-dl,

2m I~W(i,)i,-z

1 1 f Id(i
~-2 Iw(z)\ max-I(y)lllh11c,l'! -IY-I'

IT CEl'nWI, 1~I,-Z

By Lemma 6.1 and the maximum principle, we have

1
Iw(z)1 max-I-Y-I ~c.

cE I~ w(l,)

From (2.8), as in the proof of Proposition 1 in [I], we have

f Id(i { I }. IY _ 71 ~ C max log d 7 ' I ~ clog n.
In i, - (-,Tn)

Together with (7.6) and (7.7) we have (7.5).
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