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In this paper, the Marcinkiewicz-Zygmund inequality on a C smooth simple
arc is obtained. Then we get some results about approximation of the interpolation
polynomial on the arc. 1995 Academic Press. Inc.

1. INTRODUCTION

For x,=2kn/(2n+1), k=0,1, .., 2n, and for arbitrary trigonometric
polynomials 7 (x) of degree at most n, the well-known Marcinkiewicz-
Zygmund nequality can be written as [11]

n

Lip
2n+ 1 kgo 'Tn(xk)lp} S('z H Tn”p’ 1 <p< +oc,

Cy ” Tn}%p < {

where ¢, and ¢, are positive constants depending only on p.

There are many extension forms of the inequality (see, for example,
[4,6,9]), and they play the important roles in the research of approxima-
tion by interpolation polynomial and the theory of operators. In this paper,
we will prove the inequality on any C*>*° smooth simple arc in the complex
plane and get some theorems of approximation by interpolation polyno-
mial on the arc.
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As we know, there are many elegant approximation results on the inter-
val [—1,1], but there are very few papers discussing polynomial
approximation on a simple arc (not a closed Jordan curve) in the complex
plane. It is known that approximation polynomials can be constructed by
Dzjadyk’s kernels on the arc [2]. But the method is very complicated,
comparing with construction of interpolation polynomials. One of our
theorems shows the mean convergence of the interpolation polynomials on
the arc. For uniform approximation, we will give an estimation on the
error of the (n—1)th interpolation polynomial by the (n—1)th best
approximation rate timing log n.

THEOREM 1. Let I be a C**? smooth simple arc in the complex plane C.
There exists {z, ,.0<k<n}cI such that for 1<p<+o and any
algebra polynomial P, _,(z) of degree at most n— 1,

n 1ip
C3 !1P;11J1LP(F)<{ Z |P, _(ze ) t:k+l.n—:k.nl}
k=0

ca WPu_ iyl pecr) (L1)

where ¢y and c, are positive constants depending only on p and I', and
Znn=Zo,n-

For fe C(I'), let L, _,(f,z) be the (n—1)th Langrange interpolation
polynomial to f(z) at {z, ;- 0<k <n}. For fe L'(I"), let L¥_ (/. z) denote
the polynomial of degree at most # — 1 and satisfying

1 Zk+1on

er»l(ﬁzk.n)z*:——f S del,  0<<k<n (12)

\Zk,r1:k+l.n Zkon

The following two theorems are the applications of Theorem 1.

THEOREM 2. Under the conditions of Theorem 1, there exists {z, .} such
that

lim (| f(z)—L,_\(f, Wewry, =0 (1.3)

n— + X

holds for any fe C(I') and 0 < p < + 0.

THEOREM 3. Under the conditions of Theorem 1, there exists {z, ,} such
that

lim [ f(z) = L3 (), D)llpery =0 (14)

n— +

holds for 1 < p< +oc and any fe LP(I).
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Concerning uniform approximation of interpolation polynomials, we
have the following result.

THEOREM 4.  Under the conditions of Theorem 1, there exists {z, ,} such
that for any fe C(I'), n>1,

1fzy~L,, (fizWpnryScslognE, . W)

where ¢s is a positive constant depending only on I' and E,,_ ([} is the best
approximation rate of f in the L™(I") norm by polynomials of degree at most
n—1.

2+4d

Without specific declaration, throughout we assume that /" is a C
smooth simple arc and 1 < p< +oc. We use the notations ¢ and ¢, to
denote positive constants depending only on I and p, and in different
places the notation ¢ may not represent the same constant. The notation
A = B means

cA < B<cA.

2. SoME CoMPLEX (GEOMETRY

Let U be the unit disc {w: |w| <1>. Let z = ¥(w) be the conformal map
of C\U onto C\I” such that W(oc)= o0 and ¥'(oc)>0. Without loss of
generality we may further assume {,= ¥(1) and {, = ¥(e"") (0 <0, <2n)
are the two ends of I".

Evidently,

maps C\I” onto the exterior region of a smooth Jordan curve. Some
elementary calculations can show that the curvature does not jump at the
image of each end and the Jordan curve is C**¢ smooth. As in the Proof
of Theorem 3.6 and Theorem 3.9 of [6], we have (see [2, p. 386])

Yiiw)
' = 1< 2.
'(1—11")(1_()101”.—1)' 1, (w1 (2.1)

and

d ¥w) <,
E\T[u —w )1 —e"’"w*‘)} 1 =
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Then we have
[P (w)] <. (2.2)

Forw, = p, e, wy=p,e™ 1 < p,, p» <2, when both ¢, and ¢, are in the
same interval [0, 0,] or [#,, 2=n], we have

[P0, — Plws)| =< |w, —w,| min (|w; — ™|+ |w, —ws|).
0* =0, M

For simplicity of notation, we always assume the minimum of the above
formula is obtained at 0* =0; then

|P0w;) = Plwo)] = Py —wof (g — 1]+ g —wal). (2.3)

Since
2wy = ey = 1D < Dy = T+ P —wa < 2wy = L 4wy — 1),
we also have
P00, ) — P = [y — wal (g — [+ Jwy — 1], (2.4)

When ¥ is restricted on {¢’: 0€[0, 0,]}, it is an isomorphic map onto
I We denote the inverse map by @,. For re[60,, 2rn], let

J(e") = Do(Ple")).

Then J:{e":1e[6,,2n]} - {e¢”:0e[0,0,]} is an isomorphic map. We
denote the inverse map by J ' For 0€[0, 0,]. set

J((’m) — J — I(eiﬂ).

Then J is an inverse direction isomorphic of unit circle U/ with 1 and e

both fixed points. Evidently

Pe') = P(Je"), te[0,2n]. (2.5)

Lemma 2.1. For t,,1,€[0,08,], 1 < p <2, we have

|J(e™) — J(e)] = |e™ — e™| (2.6)
and

[P(pe™) — Ple™)| = |¥(pde™)) — P(J(e™))]. (27)
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Proof. By (2.3) and (2.5), we have
e — 1] = [¥(e™) — ¥(1)|'?
=|¥P(Je™)~ P>
= [J(e")—-1], j=1,2
Togther with (2.4) and (2.5)
e —e™] (e — 1] + |e"* — 1]} = | #(e™) — P(e™)|
=|P(J(e")) — P(J(e™))]
= |J(e") = Je™)] (IJ(e™) = 1] +|J(e") = 1])

= [J(e™) = J(e™)| (e — 1] + |e™ —1]).

Then we get (2.6).
By (2.4) and (2.6) we have

[P(pe’™)—Ple™) = ((p— D+ e —e™)(p—1)+ e —1] + e —1])
=((p—1)+ |Je™) = e )W (p— 1)+ [Je")— 1]
+ |J(e"™) —1])
= |P(pJle™)) — P(J(e™))
=|P(pJe™)) — P(e™)).

Then we have (2.7).

Let
I",,={‘I’[<1 +%>¢>"’J:te[0, 2n)}

F,,,z{'l’{(l +%>e”}:te[0,0,]}
FZ,,={'1’[<1+%>C"}:te[(),,27z]}.

Obviously, for Iy, or I',,, the ratio of arclength of any subarc to the chord
length 1s uniformly bounded (this argument can also be proved strictly by
(2.1) and (2.3)).

Let

and

Uiz, ry=1{{eC: |{ —z| <}, (2.8)
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then for any - e C, we have

J o) <er,  j=1,2.
D Uiz or)

Hence

ld¢| < cr. (2.9)

Iy litzr)

Then {7°,} is a series of uniformly regular Jordan curves [1].

3. CAUCHY’S INTEGRAL OPERATOR

For fe L'(I,), let
J10)
‘!I g - :

de. (3.1)

For e I', we define T, /(=) by the non-tangent limit of the above formula.

LemMa 3.1. Suppose | <p < oo, feL?(T,), then

1ip

. Lip .
(s} <e{f inonria} (32)

Furthermore, for any positive measure pu, we have

N 1 Lip (A 1ip
. ) - N v P kel
(i mrenriaen} <] vorat” 6
where
'(-)—sup'u( Uz, r)) (34)
r>0 r

This lemma is a corollary of Proposition 6 in [ 1], since I, is a series of
uniformly regular Jordan curves.

4. ADJUSTED FEJER’S POINTS

For n>0, let
ok, = PeHmy, k=0,1,..,n—1. (4.1)

They are so-called Fejer’s points. It is well-known that the interpolation
polynomials at Fejer’s points have good property of approximation in
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Jordan domains. Since ¥ maps two points {e”, J(e”)} to the same point on
I', some Fejer’s points may be very close and even meet each other. We can
see that if a pair of Fejer’s points meet each other, then we need multiple
interpolations at the point, which means interpolating to the derivative of
the function. Under the assumption f(z)e C(I'), the derivative may not
exist. In this paper, we adjust some Fejer’s points in order to keep distance
between them.
Let

: k
Kh,:{k:0<k<n.%—ne[0.01]}
1

Kzn={ki 0<k<n,%&§6[(),,2n)}.
n

By Lemma 2.1, we have
larg(J(e™)) —arg(J(e ) = ¢ 1, — 1a], t,t,e(0,.2m). (4.2)
Let

. femom
0= - 43
Co mm% 7 2} (4.3)

Now we adjust some Fejer’s points as follows.

(1) For kek,,, let
Joe = ATg(J( HINY), (4.4)

(2} For jeK,,, a function flag(j) is defined by

flag(0) =0
and
2(7—1
flag(/ 1), it min 20T S
flag(j) = k& Ko H 2n’ (4.5)
flag{j—1)+ 1, otherwise.
(3) Forjek,,, let
2j 2j .
=i if  min ﬂ—),,\,_" ;;—01
n keky | H n
Ajon= : 46
Jon 2]7[ ( )

o iy CO .
T (— 1) e 2 otherwise.
n n
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It is necessary to point out that for j,=[6,n/2n], (4.6) may cause

)ﬁm.n¢[0s a,]; (4.7)
in this case, we define
2jn ¢,
“ja. n == T - "r'l'

By (44) and (4.6), we have 4, ,€[0,0,], k=0,1,..n—1
(4) Let
:k,nzw(é’i'{k'")' k=0,1,.,n—1, (4.8)

these are the so-called adjusted Fejer’s points.
Lemma 4.1, F()I’j#k, we have
l a y ‘ > Co ( )
Liy,— A ~. 49
jon k.nl = I

Proof. Forj, keK,,, (42) implies (49). For j, k€ K,,, by (4.3) we have

2kn
n

a

Akon

2jn 2krm

n n

|)‘j.n _;Lk. nl =

2jn
- 'ﬂ'/ n 7

2 2¢, S 2cy

n n n

When je K, and k€ K,,, by (4.6) we have (4.9) too.

5. UNIFORMLY SEPARATED

A set {w,} < U is called ¢-uniformly separated if

W, —

Ze>0, (5.1)
1 —wew;

'

llklf I

J#k

and {w,} c U is called ¢-weakly separated if

inf |- |5 50, (5.2)
oy

1 —wyw;

Let D,=int(1l,), ¢,: D,,— U be a conformal map.
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LEMMA 5.1. For any n> 0, (. ,): 0<k <nt is cg-weakly separated.
o n\=k.n § 8 s p

Proof. For j#k, from (2.3) and (4.9) we have
12 0 — Zial = [ P& 7) — W)

= |Aj.n_}'k.n‘ (lAjAn——;"k,n‘ + "]'j,nl)

€o ( Co
2n <2n + l Jdt|> (5 )
Since
1N )
d(:/, ns r”) = .l[’ [ (1 +_> ("'{""} — l]’((;"l.n)
' n
/1.
x7<--|b|/[‘j,n‘>» (54)
n\n
we have
2wl 2 0z, T 55)

As in the proof of Lemma 1 in [7], we know that {¢,(z; ,): 0<k <n}
is {cy/16)-weakly separated.

In fact, we will show that {¢,(z, ,): 0<k <n} is c-uniformly separated.
Let .. denote the Dirac mass at w. It is sufficient to show that

n -1
V= Z o‘(ﬁ,,(:k‘,,j(l - '¢u(:k. 51”2) (56)
k=0

1s a Carleson measure [3].

LEMMA 5.2. For any fe E7(D, ), we have

W ey S € “f“u'(r,,; (5.7)

and

n—1

Z Sz NP de <y LS 'L7mr,,) (5.8)
]

k=t
where d, =d(z; ,. I,).

Proof. Since f(z) is analytic in D,, T, f(z) = f(z). For du, the arc length
measure of I, from (3.4) we have a(z) <c. By (3.3) we have (5.6).
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Now we are going to show that
Y WGP di <o 1 E oy (5.8)
ke Ky

The other part of the sum for k € K,,, can be estimated in the same way.
By (5.5) we have

(l .
|:j.lﬂ-:k.nl>?9(dj+dk)- (5.9)

Let r,=(c,/8) d, and let U, = U{z,_,. r;), then
AU, U) Z2r;+ 1) (5.10)

Let V=U,cx, 0U; and let ¢ be the arc length measure of V. Since
| f(2)]” is subharmonic on D,, we have

T it di<e 1117 do. (5.11)

ke Kk,

In order to use (3.3) to the measure g, we have to estimate

cf(:)=sup?(—U(—:’—r)—), ze V.
r>0 r

For zedU,, if r<2r,, by (5.10) we have Uz, r)nV=U(z,r)noU,,
then

Uz,

sup Y= (5.12)
0<r<2r r

When r > 2r,, by (5.4) we have
r>cdk>£‘~l%;—l—). (5.13)

If Uz, r)ndU;#¢ and j#k, by (5.10) we have r>2(r;+r,). Then
|z, »— Zx.al <(r;+r,) +r<2r. This implies z;, ,€ U(z, ., 2r). Then

a(U(z, r)) < > loU)| =2n Y r. (5.14)

1250 — 2k nl <2r |zj n—zk nl <2r

By (2.4) we have

{jEKln: Izj,n_zk,n' <2r} C{jEKln: |k_j|(k+j)<612n2r}‘
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Let S(k, r) denote the set in the right side of the above formula, and let
J1. j» be the smallest and largest integer in S(k, r) respectively. By (5.4) and
(5.14),

J+1 (jz_jl+1)(jz+f1+2)

)<
otz r > n? 2n?

Sik.ry
;— ‘7 j 2
=CJ_ Jl+317.+11+ . (5.15)
2n°

Noting (5.13), because of k* — ji < ¢, n% and j% —k? <c,n’r, we have
:21-‘][<2(|7n r
and

4
3i+j+ 23—+ Ak +2)<6bepyn r+~:—1—r-
11

From (5.15), we have
a(U(z, r)) < cr, r>2r..

Togther with (5.12) we have &(z) <c¢. By (3.3) and (5.11) we have (5.8").

Using Lemma 5.2, we can get the following statement similar to the
Proof of Lemma 3 in [7].
Lemma 53. For any n>0, {4,z ,):0<k<n} is c-uniformly

separated.

Since {¢,(z; ,}: 0 <k <n} is c-uniformly separated, we can use the free
interpolation theory to find an analytic function satisfying the interpolation
condition at {¢,(z, ,)}.

LemMa 54. Given complex numbers a,, k=0,1,.,n—1, there exist
glzye EX(D,) and hiz)e H ~(D,) such that

glzi ) =hlz, ) =ay, k=0,1,.,n—1,

and
n—1 /r
18l s, < {z lamdk}

HhHL’(I ¢ max |a,l.

O<k<n

Proof. The proof is the same as the Proof of Lemma 4 in [7].

64083717
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6. AN ESTIMATION OF |w, (z)] ON T,

Let
n—1

w(z)= n (z—z ) (6.1)
k=0

LEMMA 6.1. For ze [, we have

lo(z)] < [¥'(oc)]" 6.2)
Proof.  Let
n—1
oXz)=[] (z=zF,) (6.3)
k=0

where =¥, are Fejer’s points.
As in the Proof of Lemma 4 in [7] (taking x =2), we have

[*(2)] =< [¥'(oc)], zel,.
Therefore it is sufficiently to show that

w(z)

=1 6.
w*(z) (6.4)
Obviously,
w(z) z— W(en)
= L T, 6.
(U*(Z) kle_£',,z_ lll(el(an)m) ( 5)
where
S":{kEK""'Ak-”#gkj}' (6.6)
n

Let z=Y[(1 + 1/n)e”] el,. We will show (6.4) in the cases [0, §,]
and f¢e(6,, 2n) separately.

Case 1. 8¢[0,6,]. by (2.4) we have
1 2k 1 2k
|z —z¢ x<—+]0——’f ><—+|9|+ ==
n n n n

Therefore it will not cause any essential change in estimating (6.4) if we
omit several factors in the right-side product of (6.5). Hence we may

>xi_~_:k‘. (67)
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assume that (3.6) does not happen and the elements in S, range as
k(0)<k(l)< --- <k(s). By (4.5) we have

flaglk(j) =4, j=0,1,..s. (6.8)
Evidently,

N

n n

[0,&]:[0, Zk(s)”} U[Zk(;)”,alJ u7=é[2k(1)” 2k(1+1)n].

When 0 €[ 2k(!) =/n, 2k(I+ 1) n/n], by (6.6) and (6.7) we have

w(z) W—ns2 (Z=Zga—2i T = Zkii—2—1y0)
I = 1 :
g (1)*(:)' /Z::, o8 (z—zfu—2alz— I

~ % )
“k(l -2~ 1nn

. [(s— /i; 12 ] log (:_:k(/+2j).n)(:—:l:I+2j+l).n)‘ o)
=1 (Z— ks Z— 2827100
=0 +1,+0(1) (6.9)

Evidently,

(z =iy a2 —

(:_::41—21—1“:)(:_

Tkii— 25 n)

-~ % )
“kil—2jn

-~ - ~% - %
1 “k{l- L{;).’x+-/\'(172_1’— hon = “kt/—2)n" <kt/-2—1)1n

%
- “kif-2-1Ln

(X —: N2k spm—= )
“kil -2 “kid - 2y nIN=ktl =250 ~ki!—2/—1nn

. (6.10)
(c—zF i =k g

Writing 7= (— 1) (¢4 /n), by (4.6), (4.8), and (6.8) we have

P - ~% ~%
t-k(lfzj). nt Tk TR 2~ ZRU— 2~ 1nl

- lY’(t’“zk“ -2j ) min) + h]) _ l}’((’" 2k(1—2j) m‘n)

+ l]/(ei(?.lﬂl -2 r—l)m‘n)—in) _ q/((,ile(lﬁl/\l)mn))‘

n
j [.I/r(eiuzku—:jins‘nn—n) (,i((ZkilﬁZj)n);‘n+l)
0

/ - — 2 - iy — it i A R ! .
__qjl(ezuzl\(l 2j~1)y=iny l))eIHJ\JI 2ji—1)ynin) ”]d(
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By (2.1) and (2.2),

- - X ok
I“kilflji.n"_"k(lflj—Ij.n “k(l—2jn “k(l—2j—1)n

k(1 —2j)—k(I—2j—1)

<c n
H

i Ut ) el Ul A 6.11)
1

By (6.7) we have

- el -~ - ~% ~%
G2 2oy T Tkt 2 Vo — SR 2 = SR 2 yn

|z — 3;5172_;'7 bl

J=1
<'[(I—H:‘2] k(I—=2j)—k(I—-2j—1)
SO A kU= —Da+ 1)
[—1)2] k(l=2j)—k(l—2j—1)
<c ) ; '
o 0 =2k =2/ =1y m+ 1)l = 2k{I=2j)m + 1)
<C/[il k(l—-m)—k(l—-m—1)
i (0 =2kl —m— 1) n+ 1)n0 = 2k(I—m)n + 1)

¢ | 1
= __ <. 12
27 (n()—Zk(l—l)n+l n()—2k(())7z+l> ¢ (6.12)

By (2.4) we have

_ ~% - ~% -
=02 (20— Sk 2 SR 20— Zait— i 1) 0 )]

=1 I(:‘:;:llfljb.n){:__:Ittlflj sl
_ Wim (1) (k(1—=2f)+ 1)/n
a ((2k(—=2j)m)/n =0 + 1n)|(2k(I =2/} =)in| + |8] + 1/n)

=1
‘o (k1 =2j) — k{1 =2j — 1)/m)(k(I—2j)/n))
(1k(I—2j—1)m)m— 01 + 1/m){(2k(I —2j— 1)/n}y =] + 0] + 1/n)

[HU—1)2] Y — k(] — 2 —
=y M) odi=y ) <e (6.13)
(n0 —=2k(I =2 — 1) m+ 1)(n0 —2k{({ =2j)n + 1)

J=1

Then we have

2k(lym 2k(I+ D)=
€ n n ’

| <e, 0 (6.14)
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In the same way, we can get [/,| <c¢. Together with (6.9) we have (6.4)

for e [2k(]) n/n, 2k{l+ 1) n/n].
For #€e[0,2k(0)n/n] w[2k(s)n/n, 0,], the procedure of the proof is

similar. Then we have (6.4) for 0e[0,0,].
Case 2. For 0e(8,,2n), let
0 =arg(J(e”))e[0,0,]

=[]

2E ==zl (6.7")

~k.n

and let

By (2.6), we have

I-_-. |v[-’_- Ivl—’_
- “k.onl 7T e ~“k.onl 7 |~

This corresponds to (6.7) in Case 1.
For # e [2k(l)r/n, 2k(/+ 1) n/n], by (6.7") we also have formulas such

as (6.9) and (6.10). Since |z —zF | =|z—z¥ .|, by (6.12) we have

% ok |
~ktl—2jn “kil—=2j—1wn

L2 |2y saiy o T =2 1o
ER TR
j=1 - ~ktl- 2j—1)n
_ i - ~ -~% ~%
LE 02 |2y opy wt Shre 23— 1o — ZRi— 2 — SRu—2/— 1yn
= ~ X %,
j=1 I~ =kl -2i—1nn
and by (6.13)
_ ¢ ~% - -~% ~
T (R vy = Tk 2 R 20— Skt 2i— 1))
—~ ~ % - -
j=1 (("_“I\'l/*ll).n}("—__ld/' ’.’j—*ll.n)'
1y —% - % -
L 2N (22 ajy ™ Zrer— 2 a0 20— Skt 25— 1, )]
= c.
(! % Ak =
|20 =2k 5 a2 =2k o )l

j=1

Then we have (6.4) for 8" € [2k(]) n/n, 2k(I+ 1) n/n].
For & €[0, 2k(0) n/n] v [2k(s) n/n, 6,], the procedure of the proof is

similar. Then we have (6.4) for ¢ e(4,, 2n).

7. PROOF OF THE THEOREMS

Proof of Theorem 1. By the Bernstein theorem, we have ||p,, /., <
¢ Pu_illzrsy For {z; .}, the adjusted Fejer’s points, from (5.8) we have

n—1

Z IP/tfl(:/c,n)ipdkgc “PH—IUZI'(I‘)'
k=0
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By (2.4),
l:k+l,n_:k,n(xdk- (71)

The left side of (1.1) holds.
On the other hand, from Lemma 5.4 there exists g(z) € E”(D,) such that

g(:k,11)=P11~1(:k.»:)s k=0,l,...,n—1, (72)
and
n—-1 1ip
\’g|{LT’(1):'<(. { Z |Pnfl<:k.n)‘p dk}
k=0
n-—1 Il;‘p
= { z llpn—l(:k.n)ﬁp l|:k+l.n-:k,n‘|j . (73)

k=0

By (7.2) we have P,_,(z)=L,_ (g, z), hence

1 z l
Q)= P, (5) = j w(z) g({)

— 85
2ri dp, o(EY E— = ¢

=w(z) T, <§> (z), zeD,.

(82

From Lemma 3.1 and Lemma 6.1,

g — P, 1l Lor,) < max |w(z)]

Il
T, <§> ()
w LPTy)

zel,
, g .
< cemax |o(z)] || = ()
zely w VLR
' ()]
<< max “gElLl'u‘,,)

soer, |w(f)]

<cliglirrn-

Hence

1P, lleer, <c “g”uuw

Together with (7.3), the right side of (1.1) holds.
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Proof of Theorem 2. It is sufficient to prove the theorem for
1 <p<+o. Let {z, ,} be the adjusted Fejer’s points. Since L, _,(f. z) is
a polynomial of degree at most n — 1, by (1.1) we have

n—1 Lip
uL,Htf,:)nmmc{z |f<zk‘n)|"|:k+,‘n—:k,n|}
k=0

<c 1 fllry. (74)

That means L,_,: C(I'}— L”(I') is umformly bounded; then we have
(1.3).

Proof of Theorem 3. First, we show (1.4} for fe C(I'). By the uniform
continuity of f(z) on I, we have

1 Zk+ln
f(:k.n)—-—_:—_——f f(é’)

lim sup
Izk.nzk-+- l.nl “kon

n—x 0<k<n

Similar to (7.4), we have

lim [|L,_ (fi2)—L¥ (f 2\ iory

S 1 Skarn
f(:k.n)_—;:_——_—f f0)

<c¢ lim sup
IZ6 nZk+1nl “o0n

n—x 0<k<n

From Theorem 2 we have (1.4) for fe C(I').
For f{z)e L?(I'), by Theorem 1 and Holder’s inequality

n—1

1LY (fo M py S Y

k=0

Zk+1, "f(C)

IZketon =k
|~k nZk 1, n' &, n T "

<c'y Lﬁ:—L—"-_iﬁL'j:“""lf<¢)|P|dc|

k=0 ,“k nZk 41, al T
<Cl3 ”fHLI'(I'r
That means LY _,: L?(I') — L”(I') uniformly bounded. Since C(I") 1s dense
in L?(I"), we have

TIIT W2y —=L¥ _(f D) o

mf Tim (1 f(z) L:—l(f—h’:)”Lf’tl‘j

+|A(2) = LY (A, ) 1o ry)

< inf {0 +e3) 12 =h2) ooy
heC(I)

+ [im lA(z)— L¥_ (A, Z)HLNH} =0.

n—
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Proof of Theorem 4. In fact, it is sufficient to show

1P, () pry<Sclogn max |P,_(z; )| (7.5)

O<k<n

holds for any polynomial P, _,(z) of degree at most n— 1.
By Lemma 54, there exists (z)e H *(D,) such that

h(:k.n):Pn~](:k‘n)v kZO» la"‘an_19
and

”h(:)HL"—(I‘,,)éc max ,Pn—l(:k,n” ScilP, 2 peiry- (7.6)

For ze I, we have

S

(L)

)= Pyl =5 | S

. ¢

2ri

1 J, (z)

Lo ! ]
g leEmas b | w=0 00)

By Lemma 6.1 and the maximum principle, we have

Jw(z)] max 1

—— KL C.
cer | Q)]

From (2.8), as in the proof of Proposition 1 in [1], we have

|dC] 1
<cmax <log——— 1 ;<clogn.
JI‘HIC—Zf ¢ max <log AT 1} clogn

Together with (7.6) and (7.7) we have (7.5).
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